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Theory of polyelectrolytes in solvents

Shirish M. Chitanvis
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

~Received 27 August 2003; published 31 December 2003!

Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian,
charged chain and derive an effective short-ranged potential between the charges on the chain. This potential
is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from
this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low
concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent character-
izing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value
obtained for second order phase transitions. For short chains, the radius of gyration varies linearly withN, the
chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain
lengthN indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when
the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical
potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal
condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the
parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable
to experimental verification.

DOI: 10.1103/PhysRevE.68.061802 PACS number~s!: 61.41.1e
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I. INTRODUCTION

A distinguishing feature of biopolymers is the presence
charges along the chain and their subsequent interaction
each other and ionic aqueous solvents. Yet another aspe
the semirigidity of some biopolymers. In this sense, biopo
mers differentiate themselves from polymer melts, which
neutral, and most theoretical treatments involve the treatm
of flexible polymers. Furthermore, these theoretical tre
ments of melts almost exclusively use models of a s
excluded volume nature. A general treatment of electrost
interactions between charges on a polymer is crucial in o
to extend the validity of theoretical models to biopolyme
polymers exhibiting counter-ion condensation in ionic s
vents, etc.@1–4#.

This paper lays a field-theoretic foundation for a theor
ical treatment of charged polymers in ionic solutions. Te
nically, the theory applies to flexible polyelectrolytes. Ho
ever, we have argue that by choosing the Kuhn length to
the correlation length of a semirigid polymer, it should
possible to address the physics of semiflexible polymers.
intent is not only to understand the behavior of the radius
gyration with chain length, but also to gain a basic know
edge of condensation phenomena. Our calculations of
radius of gyration generalize standard treatments for melt
mean-field approach was employed to develop a phase
gram for condensation/noncondensation of charged p
mers. In this endeavor, we found the recent experime
paper by Butleret al. @5# very useful.

For the case of excluded volume interactions in po
mer melts, it was shown by de Gennes@6# and others@7–9#
that in the limit of low number concentration of monome
the physics of polymers is analogous to the onset of a sec
order phase transition. It will be shown that a similar situ
tion ensues when considering polyelectrolytes. The Fl
exponent in this case, for long chains, is argued to be id
1063-651X/2003/68~6!/061802~12!/$20.00 68 0618
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tical to the classical case. This is in distinction to the arg
ments @10# given by Katchalsky@11# and Flory @12# for
polyelectrolytes, where a long-range, unscreened Coulo
interaction was employed and the effects of any solvent w
ignored.

This paper develops a model which begins with
screened Coulomb interaction between native elect
charges and adsorbed counter-ions along the segments
Gaussian chain. This screening length is independent of
solvent properties. These charges also interact with the
rounding ionic solvent, treated as a continuum. The theor
this paper continues the development of a functional integ
technique@9# which begins with the formulation of a system
of many homopolymeric flexible chains, and whose se
ments interact through a finite-range potential.

The functional integral technique utilized in this paper
different from the coarse-graining method employed by F
dricksonet al. @13# Fredricksonet al.use the number densit
of the polymer segments as the order parameter. The ad
tage afforded by this technique is that the interaction te
becomes quadratic and hence trivial to calculate. Howe
the entropy, or free-chain part of the energy functional b
comes nonlinear, complex and hence presents a comp
tional challenge. The order parameter introduced in our
per is a probability amplitude whose absolute squ
corresponds to the number density of segments. The f
chain portion of the energy functional is linear in this a
proach, while the interaction term remains understanda
nonlinear and difficult computationally. The positiv
semidefinite form of our energy functional may also off
some computational advantages. Our formalism can
viewed as a generalization of the self-consistent field the
used by Curro’s group@6,14#. The model of interaction used
in this paper differs somewhat from that utilized by Cur
et al. Our approach is most similar to that of Kleine
@15,16#, but the scope of our study is broader.
©2003 The American Physical Society02-1
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SHIRISH M. CHITANVIS PHYSICAL REVIEW E68, 061802 ~2003!
Functional integration is used to integrate over the fl
tuations in the ionic solvent, and derive an effective inter
tion between the charges on the chain. This interaction
repulsive at short distances, and attractive for larger sep
tions. The chemical potentialm corresponding to this inter
action can be computed. The chemical potential chan
sign, depending on the parameter regime. Using the inter
tation of m as the energy required to add a segment~mono-
mer! to the system, one associatesm.0 with meltlike behav-
ior, andm,0 with a condensed state. Indeed it will be show
that whenm,0, it is possible for a single strand of polyele
trolyte to condense into a toroidal shape. Spherical sha
are also possible.

We discuss briefly in Sec. II and the appendix the man
in which a collection of interacting strands, rather than
single strand, can be addressed within the formalism de
oped in this paper.

II. THE BASIC FORMALISM

We reproduce here briefly for completeness the functio
integral formulation of a homopolymer chain. For the reco
it must be stated that this formalism differs from the stand
mapping of the self-avoiding walk of a single chain onto
f4 field theory@6,7#. It can be generalized in a straightfo
ward way to deal with many chains. Technically speaki
the model is restricted to flexible chains. However, if o
treats the segment length as a Kuhn length, i.e., as an e
tive distance which represents the correlation length o
semiflexible polymer, then one expects this model to rep
duce the overall features of a semirigid chain as well.

The probability distributionG0(1,2;n) for a single Gauss-
ian chain may be represented by@17#

G0~1,2;n!5S 3

2pb2unu D
3/2

expS 2
3uRW 12RW 2u2

2unub2 D
;E

RW 2

RW 1DRW ~n8!exp2F S 3

2b2D E
0

n

dn8S ]RW ~n8!

]n8
2D G

[^1,nuF]n82S b2

6 D¹2G21

u2,0&, ~1!

where b is the Kuhn length of the polymer as discuss
above, and where]n8[]/]n8. This expression is obtained b
considering only the entropy of a flexible chain.

G0(1,2;n) can also be thought of as the Green’s functi
for the diffusion operator in three dimensions, as indica
by the last of Eq.~1!.

Alternatively, one knows from methods in functional in
tegration that@18#

^1,nuF]n2S b2

6 D¹2G21

u2,0&

;E D 2cc* ~RW 1 ,n!c~RW 2,0!exp2@bF0#,
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bF05E dn8d3xc* ~xW ,n8!F]n82S b2

6 D¹2Gc~xW ,n8!, ~2!

whereD 2c[Dc* Dc, b51/kBT, kB is Boltzmann’s con-
stant andT is the temperature. Thus we have another way
thinking about a system of flexible polymers, in terms of
probability amplitudec(xW ,n) and an energy functionalbF0
which is isomorphic to one that describes diffusion. He
(xW ,n) labels the locationxW in physical space, of thenth seg-
ment of a chain. A similar approach has been advocated
Kleinert @15,16#. Following the convention in quantum fiel
theory,uc(xW ,n)u2 is interpreted as the probability of finding
polymer segment at a given location in space.

The main advantage of the functional path integral f
malism is that one can model more easily interactions
systems with large numbers of polymers by adding an in
action term as shown below:

bF0→bF5bF01bDF,

bDF5E d3xd3x8dndn8V„c~xW ,n!,c* ~xW ,n8!…, ~3!

where V„c(xW ,n),c* (xW8,n8)… represents the interaction be
tween segments. Note that in general, on physical grou
nÞn8, as different configurations of the strand permit se
ments from different parts of the chain to be in the proxim
of each other.

The form chosen forV in this paper is

V„c~xW ,n!,c* ~xW ,n8!…

5S 1

2D uc~xW ,n!u2 Un,n8~ uxW2xW8u!uc~xW8,n8!u2.

~4!

HereUn,n8(xW2xW8) represents a repulsive-attractive sho
ranged interaction between monomers. The precise form
the potential useful for describing polyelectrolytes will b
discussed in detail the next section. Equation~4! is displayed
pictorially in Fig. 1.

Upon extremizing the functionbF with respect toc* , one
obtains a nonlinear diffusion equation:

FIG. 1. The Feynman diagram indicating schematically the b
vertex, which represents the interaction term in the energy fu
tional. It displays two segments interacting with each other a
distance.
2-2
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]c~xW ,n!

]n
2S b2

6 D¹2c~xW ,n!1E
0

N

dn8E d3x8uc~xW8,n8!u2

3Un,n8~ ux2W xW8u!c~xW ,n!50. ~5!

This equation is also analogous to the single-elect
Hartree-Fock equation in quantum mechanics, and applie
a singlepolymer strand.

If a generalization to many strands~several electron orbit-
als in quantum mechanics! is required, then the requisit
form would be

]C i~xW ,n!

]n
2S b2

6 D¹2C i~xW ,n!1(
j 51

Nc E
0

N

dn8E d3x8

3uC j~xW8,n8!u2Un,n8~ uxW2xW8u!C i~xW ,n!50, ~6!

where the subscript on the amplitude indicates a chain la
Nc being the total number of chains in the system. The r
of the paper will focus primarily on the physics of a sing
chain. We shall return in the Appendix to a renormalizati
group calculation which refers to a system of multip
chains.

We shall now show how a connection can be made
standard results in polymer theory. The correlation funct
G0(k,p), p being the separation between any two segme
on the Gaussian chain can be obtained by using the Fo
transform of the Gaussian distribution function discuss
earlier in the section. This Fourier transform shall be deno
by Ĝ0(k,v):

Ĝ0~k,v!5
1

2 iv1~bk!2/6
,

G0~k,p!5E
2`

` dv

2p
exp~2 ivp!Ĝ0~k,v!. ~7!

A simple contour integration, performed by closing t
contour in the complexv plane in the clockwise direction
leads to

G0~k,p!5exp„2upu~bk!2/6…. ~8!

The radius of gyrationRg
0(p) can be defined as

Rg
0~p!5S ]u ln„G0~k,p!…un0

]k D
k50

5~b/A6!Ap,

1

n0
5power of k[2. ~9!

The experimentally accessible structure factor associ
with the Gaussian chain ofN segments can defined in th
following fashion:

Ŝ0~k!5N21E
0

NE
0

N

dmdnG0~k,um2nu!

'N„12~1/3!k2Rg
0~N!2

…1O~k4!. ~10!
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Rg
0(p) can also be defined in terms of the structure fact

Rg
0~N!5S ]@3u ln„Ŝ0~k!…u#n0

]k
D

k50

5S b

A6
DAN,

1

n0
5power of k[2. ~11!

In the presence of interactions,Ĝ0(k,v) gets renormal-
ized in the usual way, and an associateddressedcorrelation
function G(k,N) and dressed structure factorŜ(k) can be
defined analogously:

Ĝ0~k,v!→„Ĝ0
21~k,v!2S~k,v!…21,

G~k,N!5E dv

2p
exp~2 ivN!Ĝ~k,v!,

Ŝ~k!5N21G~0,N!21E
0

NE
0

N

dmdnG~k,um2nu!, ~12!

where a normalization factor has been included in the d
nition of the structure factor.

The radius of gyrationRg(N) in the presence of interac
tions can be defined following the ideas for the free chain
terms of the dressed correlation function:

Rg~N!5S ]u ln„G~k,N!G~0,N!21
…un

]k D
k50

,

1

n
5power of k, ~13!

where a normalizing factor has been inserted on the r
hand side of Eq.~13! for completeness. Equivalently,

Rg~N!5S ]@3u ln„Ŝ~k!Ŝ~0!21
…u#n

]k
D

k50

,

1

n
5power of k in the argument ofŜ~k,N!. ~14!

Yet another method to calculate the radius of gyration w
be presented in Sec. V.

III. POLYELECTROLYTE IN A SOLVENT

Let us suppose that the net charge density on any segm
along the chain is given by sum of negative and posit
charge densities on the chain:r t(xW ,n)5r2(xW ,n)
1r1(xW ,n), with r2,0, r1.0. Then the total free energ
which describes the interaction between these charges
the electrolytic solution is given by three terms, describi
the interaction of charges along the chain, the solvent,
the interaction between the polymer and the solvent, resp
tively:

bF0→bF5b@F01DFpolymer1DFsolvent1DFpolymer-solvent#,
2-3
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bDFpolymer5S b

2 D E d3xd3x8dndn8r t~xW ,n!

3
exp~2keuxW2xW8u!

uxW2xW8u
r t~xW8,n8!,

bDFsolvent5S be

8p D E d3x@ u¹W f~xW !u21k2f~xW !2#,

bDFpolymer-solvent52bE d3xdnr t~xW ,n!f~xW !, ~15!

wheref(x) is the electrostatic potential of the ionic solven
ke51/le is the inverse screening length of the polymer,k
51/l is the inverse screening length in the solvent, where
is the dielectric constant of the solvent (e'80 for water!.
The reason for assuming the screening lengths to be dis
for the chain (le) and the solvent (l) is that even in the
absence of an ionic solvent, when the adsorbed charg
null, the conformations of the negatively charged Gauss
chain can screen the Coulomb interaction between the na
charges on the chain.

The charge distribution on the chain is given by

r2~xW ,n!5q2~n!uc~xW ,n!u2, q2~n!,0,

r1~xW ,n!5q1~n!uc~xW ,n!u2, q1~n!.0. ~16!

Here q2(n) refers to the native negative charge on t
backbone of the polymer, andq1(n) refers to the positive
counterions that may be adsorbed onto the chain. One
conclude from this that if the negative native charges
singly charged, then the adsorbed counterions would hav
be multiply charged, as otherwise the net charge would
zero, and we would be reduced to studying a neutral mel
also allows for the possibility that the counterions are doc
in a physically different location along the chain than t
native charges, which would allow for local regions of attra
tion to be created.

Beyond these inferences, one notes that if the above fu
tion Eq.~15! were to be extremized with respect to the sca
potential f, one obtains the standard Debye-Huckel eq
tion, valid in the limit of low ionic strengths. Thus our pap
goes beyond the standard, mean-field Debye-Huckel m
by considering fluctuations around that approximation in
full energy functional given by Eq.~15!. These fluctuations
will be shown shortly to lead to an attractive component
the correlations between like charges along the chain.

Note that the electrostatic potential appears quadratic
in the functional. One can now integrate over solvent degr
of freedom, in particular, accounting for deviations from t
Debye-Huckel mean-field limit to obtain an effective fun
tional:

Z5E D 2cDf exp@2bF#;E d2c exp@2bFeffective#,

bFeffective5b@F01F8#,
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bF 85S b

2 D E d3xd3x8dndn8r t~xW ,n!V~ uxW2xW8u!r t~xW8,n8!.

~17!

One sees that the effective potentialV, exemplified in Fig.
2 is given as follows:

V~ uxW2xW8u!5
exp~2keuxW2xW8u!

uxW2xW8u
2

exp~2kuxW2xW8u!

euxW2xW8u
.

~18!

Observe that integrating over the solvent degrees of fr
dom has led to an attractive~negative! supplement to the
original short-ranged screened Coulomb interaction. T
electrical polarization of the water, signified bye serves to
weaken this attractive part of the potential. Given that
solvent we consider is water, which has a natural pH of
one always has an associated nonzero screening len
viz., l.

The various parameters used in model, e.g.,q1(n), l, le
are inter-related. This is because changing the ionic conc
tration in the solvent affects not onlyl, the solvent screen
ing length, but also the amount of adsorbed chargeq1(n)
and hence the screening lengthle along the chain as well
And it may be prudent initially to appeal to experiment
order to assess their magnitudes.

The physical notion behind the effective potential
analogous to what happens in electron-phonon physic
metals, when the attraction between electrons and phon
~motion of positive ions! leads to an effective attraction be
tween the electrons themselves. This effect can be depi
pictorially in Fig. 3.

The approach taken in this paper, viz., integrating over
solvent degrees of freedom, is complementary to the
proach of Manning@19#, in which the focus rests on th
electrostatic potential of the solvent. The polyelectroly
represented by an infinite line charge, was shown by M
ning to polarize the surrounding ionic solvent. There exist
thin annular cylinder around the rod which attracts counte
ons, allowing for condensation under certain conditio
Manning’s theory is a mean-field approach. The appro
developed in this paper is more general. The present the
accounts for fluctuations around the mean-field approxim

FIG. 2. This is a plot of the effective potential derived in th
paper. Representative parameters were used:e580, le53.4 Å, and
l510 Å.
2-4
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THEORY OF POLYELECTROLYTES IN SOLVENTS PHYSICAL REVIEW E68, 061802 ~2003!
tion. It allows for a general description of the physics
polyelectrolytes, and is not restricted to a description of c
densation alone.

Furthermore, as suggested earlier, if one takes the
ment lengthb to represent the correlation length of a sem
rigid polymer, we expect the model to reproduce the ove
phenomena associated with semirigid polyelectrolytes.

IV. REGIMES OF POLYELECTROLYTE BEHAVIOR

The effective potential derived in the previous section p
mits an insight into the variety of behavior that polyelectr
lytes in solution can display. In order to do that, it is useful
add a constraint to the energy functional described in
previous section, viz.,Fe f f to conserve the number of mono
mers on the polymer:

bFe f f→bFe f f1bDFm ,

bDFm52mE dnE d3xuc~xW ,n!u2,

m52pN,bc0~le
22l2e21!,

,b5b~q12uq2u!2, ~19!

where,B is the Bjerrum length,c0 is the number density o
monomers,N is the chain length, and the chemical potent
is obtained by minimizing the energy functional in Eq.~19!
in the limit that the wave amplitudec is independent of
xW , n. It has also been assumed for simplicity that there i
uniform charge distribution along the chain.

By convention, the chemical potentialm represents the
energy required to add a segment to the system. Hence,
examining Eq.~19!, one sees three possible regimes.

Melt. When,m.0, the polymer behaves as a melt, wh
repulsion dominates, and it costs energy to add a segme
the system. This occurs when the screening length along
chainle.l/Ae. This is similar to Manning’s discussion o
polyelectrolytes.

Q point. The monomers are perfectly miscible with ea
other when the chemical potentialm50. This occurs when
le5l/Ae.

Condensation.When the screening length along the cha
le,l/Ae, the chemical potential becomes negative, indic

FIG. 3. A schematic view of the correlation effect which leads
an effective attraction between like charges on the chain. Oppo
charges in the solvent create a region which attracts like charg
06180
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ing that the system encourages the addition of monomer
is natural to identify this regime as that of condensation. O
criterion is similar to that of Manning@19#, but it requires a
consideration of fluctuations around the Debye-Huckel
proximation. In this sense our approach bears a greate
semblance to the analytic arguments in the paper of Jen
et al. @20#.

As discussed earlier in the paper, if we assume that
native charge on the chain is negative, viz.,q2,0 and cor-
responds to the charge of a single electron, then clearly,
require q1 the charge on the condensed counterion to
multivalent, as otherwise the net charge is null, leading t
neutral polymer, and a discussion of condensation beco
moot. It is beyond the capability of the current theory
address the difference in the condensation behavior ofdiffer-
ent types of multivalent molecules carrying the same cha
@5#.

Using SAX techniques, Butleret al. @5# show that virus
solutions need a minimum diamine concentration for the
set of condensation, as signaled by the emergence of a
at a non-zero wave vector. Moreover, they show that th
also exists a maximum ion concentration above which c
densation ceases. Equation~19! can be interpreted in light o
these experimental results. For low ion concentrations,q1

the adsorbed counterion charge is correspondingly small,
the screening length along the chainle is very large. Since
the dielectric constant of the aqueous solvent is h
(;80), the chemical potentialm52pN,bc0(le

22e21l2)
can be greater than zero, preventing condensation. As the
concentration increases, the screening lengths along
chain and in the solvent decrease. When this change oc
in such a way thatle shrinks faster thanl, such thatl
.el, then the chemical potentialm,0, leading to conden-
sation. Indeed this criterion is similar to the one derived
experimental grounds by Butleret al. For even higher ionic
concentrations,le cannot shrink much below the monom
length, and it is possible for the chemical potential to beco
positive once again. Condensation then ceases. It may p
possible to adjust the parameters in this theory to reprod
quantitatively the condensation data of Butleret al. @5#. Our
aim here is to display that the theory is simply capable
addressing experiments. The cessation of condensatio
relatively high ionic concentration appears to be a new
perimental result, and it is important to point out that t
theory in this paper can address this issue.

The theory presented in this paper is similar to that
Golestanian and Liverpool@21#. These authors use a phe
nomenological theory of semirigid chains decorated w
charges. The only interaction in their theory is that betwe
these charges. The presence of a solvent is implicitly
knowledged through an effective screening length. In o
theory, it would correspond to neglecting the termsFsolvent
andFpolymer-solvent. They show that fluctuations in the shap
of a semirigid rod lead to a buckling instability. These a
thors too find cessation of condensation upon increasing
salt concentration sufficiently, by considering the behavior
the correlation length.

The current theory can accommodate the zipperlike m
invoked by Kornyshev and Leiken@22#. Our approach can be

ite
.
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SHIRISH M. CHITANVIS PHYSICAL REVIEW E68, 061802 ~2003!
construed as providing an analytic background to the
merical simulations of Stevens@23# of bead and spring poly
electrolytes in a solvent.

The onset of condensation in biopolymers, based on
assumption of entirely rigid polyelectrolytes, has been sho
by Kholodenko@24# to be analogous to the melting of vort
ces in Thouless’ two-dimensional model of a glass. In
future, one could attempt to investigate aspect further, us
the current formalism, which does not assume rigid rods
follows. Rather than integrating over the electrostatic pot
tial of the solvent, one could attempt a functional integrat
over the polymer degrees of freedom. In this case, extrem
ing the new effective functional with respect to the elect
static potential will lead to a generalization of th
Kholodenko model to nonrigid polyelectrolytes in solution

c0→01. In addition to the three regimes discussed abo
there is one more important regime within the melt pha
which merits attention, and permits a connection with
scaling arguments first derived by de Gennes@6#. Consider
the energy densityb f e f f for a homogeneousc:

b f e f f5~1/2!NaV̂~k50!~ uCu42c0uCu2!, ~20!

wherea5,b /b, where the dimensionless number concent
tion c0 can be expressed in terms of the actual monom
number concentrationc̃0 and the Kuhn lengthb as c0

5 c̃0(b/A6)3 Thus whenc̃0(b/A6)3! 1, one sees that th
double-well structure displayed in the next figure is just b
ginning to form. This is the traditional signal for a secon
order phase transition~see Fig. 4!. Physically this occurs
because the mean free path between collisions is very l
in the low number concentration limit, permitting large flu
tuations, the hall-mark of second order phase transitio
Note that the criterion above is consistent with the argume
given by Freed@27#, where it is shown that phase transitio
like behavior occurs in theb→0 limit.

FIG. 4. A schematic of the double well potential given by t
energy densityb f e f f , in arbitrary units. Notice that the height o
the potential barrier decreases as the concentration of mono
decreases, allowing for more fluctuations between the minima.
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V. RENORMALIZATION GROUP CALCULATIONS
IN THE MELT REGIME

We shall now show that the polymer model considered
this paper exhibits a fixed point of the renormalization gro
transformation, reflecting the large fluctuations expected
the c0b3→01 ~melt! regime. Since a renormalization grou
fixed point in the long wavelength limit~for long chain
lengths! is always independent of the details of the intera
tion, it is expected that our model of realistic interactio
should yield results identical to the excluded volume mo
usually considered in polymer theory. Nevertheless, it is u
ful to derive this result explicitly so that it displays the v
lidity of the field theoretic approach employed in this pap
Further, we shall compute a reasonably accurate value fo
Flory exponent, obtained when the chain lengthN is very
large. In what follows, we shall use a natural system of un
in which the unit of length will be taken to beb/A6, where
b is the segment length. As discussed earlier in the paper,b is
the monomer length for a flexible chain.b could be taken to
be the correlation length for a semirigid chain.

Finally, note that the model is analogous to the theory
dynamical second order phase transitions@25#, with the seg-
ment labeln playing the role of time. The model has fou
independent variables, viz., three spatial dimensions and
additional label for the location of a segment along the cha

Towards that end, let us consider the first order correct
to the bare vertex@the basic interaction displayed in Eq.~3!#.
It corresponds to the first order polarization diagram
many-body physics. It represents the generalization of
correction that occurs in an excluded volume interact
model @9#.

The result depicted in this figure can be encapsulated
the renormalization of the coupling constanta ~using a
length scale ofb/A6):

a→aR~q,v!5a „11aP0~q,v!V̂~q!…,

P0~q,v!52E d3q8

~2p!3E dv8

2p
Ĝ0~q8,v!Ĝ0

3~ uqW 82qW u,v82v!, ~21!

where the Fourier transformĜ0(p,v) of the unperturbed
propagator~Green’s function! defined in Eq.~1!, is given by

Ĝ0~p,v!5
1

2 iv1p2 . ~22!

Now P0(q,v) represents screening of the interaction b
tween monomers due to intervening segments. Thus it is
itly assumed that we are in the long-wavelength regime,
the chain length is large, as it is in this regime that o
expects screening effects to dominate. Screening is cle
unimportant for extremely short chains, as the probability
finding intervening segments in this case is vanishin
small.

ers
2-6
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THEORY OF POLYELECTROLYTES IN SOLVENTS PHYSICAL REVIEW E68, 061802 ~2003!
Upon performing the frequency integration in Eq.~21! by
the method of residues, by closing the requisite contou
the lower half-plane:

P0~q,v!52S 2

~2p!2DReF E dpp2E
21

11

dx
1

iv22pqxG ,
~23!

whereRe implies the real part of the quantity on its righ
hand side is to be considered. The polarizationP0(q,v) can
be recast as

P0~q,v!52S 1

2p2qD E
0

`

dll21cos~vl!E dpp„exp~2zp!

2exp~22pql!…, ~24!

wherez→01, and the factor of exp(2zp) has been inserted
into Eq. ~24! to achieve convergence. We now invoke t
integral representation of a gamma function, vi
*0

`dxxpexp(2axm)5m21a2(p11)/mG„(p11)/m… to obtain
closed form expressions for the integrals in Eq.~24!. How-
ever, this gives rise to divergent factors such asG~22!. These
divergences can becuredvia different methods, such as Wi
son’s renormalization scheme. The renormalization sche
to handleultraviolet divergences utilized in this paper fo
lows more closely the method of dimensional regularizat
@26# of ’t Hooft and Veltman. This technique allows one
separate out the infinities, by settingp→p2e, e→01, for
p11/m equal to a negative integer, in the expression ab
for the integral representation of the gamma function. T
allows us to express the polarization function as

P0~q,v!5
21

~2p!2q
z221

v22e

~4p!2q3
G~221e!. ~25!

Using the Macclaurin series forG(221e),

G~221e!'~1/2!@e211c~3!1O~e!#, ~26!

one can isolate the divergent portions of the polarizat
function as being proportional toz22 ande21. These infini-
ties can be canceled by the invocation of appropriate co
terterms inF, as is normally done in field theory. This allow
us to retain only the finite portion of the polarization fun
tion:

P0~q,v!52
f ~v!

q3 ,

f ~v!52S v

A2p D 2

@ ln~ uvu!23/21g#, ~27!

whereg is Euler’s constant, numerically close to 0.5772.
A test of the renormalization scheme used to handle ul

violet divergences here is to calculate an observable o
known quantity such as the Flory exponent. This will
done shortly, after a thermodynamic fixed point has be
identified. This fixed point is associated with the second
der phase transition discussed in the previous.
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One must go to the long wavelength limit in order
invoke the renormalization group. This renormalizati
group applies to the infrared limit (q→0), and must be dis-
tinguished from the preceding discussion regarding the
havior in theq→` limit.

It is convenient to redefine a scaled coupling constan
the q→0 limit, with an associatedb function which yields
the renormalization group flow:

âR~q,v!5aRS f ~v!V̂~q50!

q3 D ,

b~âR![
]aR

] ln L
53~ âR2âR

2 !, ~28!

whereq[L21. In analogy with the theory of second orde
phase transitions, scale invariance of the coupling cons
must be invoked for a proper description of the physics
follows from Eq.~28! thatb(âR) has a nontrivial fixed point
at âR[âR* , or ataR[aR* :

âR* 51,

aR* 5
q3

f ~v!V̂~q50!
. ~29!

It follows from Eq.~29! that in the long wavelength limit,
in the c0→01 regime, the interaction has the following un
versal form, independent of the particular interaction pot
tial we started off with

aV̂~q→0!→2
2p2q3

v2@ ln~ uvu!23/21g#
. ~30!

The same result could have been obtained in a more m
dane fashion by using the so-called random phase appr
mation ~RPA! in which one traditionally sums up bubbl
diagrams of all orders. Nonetheless, the renormaliza
group approach is essential in that it explicitly manifests
scale invariant properties of the system.

Scaling arguments will be utilized to obtain a value of t
Flory exponent. These are provided in lieu of the conve
tional renormalization group argument based on sca
transformations. That treatment is based on the scaling p
erties of the simplerf4 Ginzburg-Landau functional. In the
present paper, we have a more realistic interaction poten
viz., V to deal with. Consequently, the straightforward sc
ing properties of thef4 excluded volume theory are n
longer valid. A more complex set of scalings, involving th
screening lengths are required to maintain the scale inv
ance of the current theory. But this implies a restriction
the class of polyelectrolytic solutions that can be consider
conforming to the scaling transformations. The altern
derivation offered below suffices to yield the Flory expone
fairly accurately.
2-7
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SHIRISH M. CHITANVIS PHYSICAL REVIEW E68, 061802 ~2003!
Consider scaling behavior of the energy functional fo
Gaussian chain:

bF05E dv

2pE d3k

~2p!3ĉ* ~k,v!~2 iv1k2!ĉ~k,v!.

~31!

The diffusionlike, self-similar form permits the functiona
to be scale invariant under the following transformations

v→v/N,

k→k/j~N!,

j~N!5N n0,

ĉ→ĉj5/2~N!, ~32!

wheren051/2. The relation betweenj andN is identical to
the relation between the radius of gyrationRg andN. Hence
we shall identify the length scalej(N) with the radius of
gyration.

Let us now consider the case when the interaction, vizV
is turned on between the segments. The behavior of the
ergy functional in the long wavelength limit (q→0, v→0)
is dominated by the behavior of the effective interaction
the fixed point of the renormalization group transformatio
@see Eq.~30!#,

bF* ;E dv

2pE d3k

~2p!3ĉ* ~k,v!S k3

v22p22D ĉ~k,v!,

~33!

where we have usedxe'11e ln x, e!1 to convert a loga-
rithm to a power law.

This functional exhibits invariance under

v→v/N,

k→k/j~N!,

j~N!5N n,

ĉ→ĉj3/2~N!, ~34!

wheren52/321/(3p2)'0.63.
This estimate of the radius of gyration holds for asym

totically large chain lengthsN, when the concentration o
monomersc̃0!(A6/b)3.

If one accepts the value ofn'0.5889 as obtained within
the framework of the Edwards’ model, then the result in t
paper is accurate to about 92%. On the other hand, Klei
@15# has shown that when the asymptotic series in thee ex-
pansion is handled appropriately, the value of 0.5889 is
placed by 3/5. Kleinert then uses field theoretic methods
the replica trick to rederive a value ofn'0.62. The value we
obtained,n'0.63 is fairly close to the universal value fo
n'0.634 accepted in phase transition theory.
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This value is quite different from the one derived by Flo
@12# and Katchalsky@11# for the case of an unscreened Co
lomb interaction, which yielded a linear dependence on
chain length.

VI. RADIUS OF GYRATION FOR SHORT CHAINS

For the case of short chains, when the coupling cons
a5A6,b /b,1, one can compute the lowest order Feynm
diagram to estimate the self-energy, which renormalizes
Green’s functionĜ0(k,v). This estimate is correct whena
,1 and when the chains length is relatively short. This
because screening is expected on physical grounds to be
important for short chains. It turns out that there are t
terms ofO(a) in a perturbative expansion of the self-energ
The first one, the tadpole diagram can be renormalized a
in the usual fashion by the addition of a counterterm. T
remaining term is reminiscent of the exchange diagram
many-electron physics~as shown in Fig. 5!.

Using the Feynman-Dyson technique, repetitions of t
diagram can be summed as a geometric series to infi
order. This exchange diagram contribution to the self-ene
can be expressed in closed form as follows:

Sexch~k,v!52aE d3q

~2p!3
Ĝ0~k,v!V̂~ ukW2qW u!, ~35!

where it is tacitly assumed that we are in the low concen
tion limit. Since our focus is on estimating the radius
gyration for relatively short chains, we need only to evalu
the self-energy in the long-wavelength limit, viz.,k→0. To
facilitate this, the angular integrals in Eq.~35! can be done
and the contributions toO(k2) of the integrand can be writ
ten explicitly:

E
0

2p

dfE
0

p

duV~Ak21q222kq cosu!

'8p2F 1

q21ke
2

2S 1

e~q21k2!
D G1S 8p2k2

3 D
3F 3

e~q21k2!2
2

3

~q21ke
2!2

1q2S 4

~q21ke
2!3

2
4

e~q21k2!3D G . ~36!

The subsequentk integration can be performed with th
aid of Mathematica. The results are long and cumberso
and not much is gained by stating the expressions explic

FIG. 5. A diagrammatic depiction of the approximation used

the calculation. The thick line indicatesĜ. The first term on the

right-hand side of the equation refers toĜ0. The second term refers
to theexchange-like diagram referred to in the text. The final term
is the second order correction.
2-8
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THEORY OF POLYELECTROLYTES IN SOLVENTS PHYSICAL REVIEW E68, 061802 ~2003!
other than to say that the integrals contain logarithmic te
of the form lnv. Formally, the next step is to evaluate th
correlation function:

G~k,N!'E dv

2p

exp~2 ivN!

2 iv1k22Sexch~k,v!
. ~37!

This integral could be evaluated using the method of re
dues, by closing the contour in the lower half plane if t
root~s! of the denominator could be located. Since our int
est is in thek→0 limit, it is possible to estimate the root o
the denominator perturbatively:

v root'2 ik21 iSexch~k,v52 ik2!1O~a2!. ~38!

Before the residue can be calculated, the presence o
logarithmic terms referred to above imply the existence o
branch cut in the complexv plane from2` to 0 along the
real axis. Hence the contour has to distorted slightly into
lower half-plane along the negative real axis to avoid t
branch cut, so that the only singularity enclosed by the c
tour in the lower half-plane is at the root given by Eq.~38!.
It then follows, using Mathematica, that in the long wav
length limit:

G~k,N!/G~k50,N!'exp„2 ikg~N!…,

g~N!5a~le
42e21l4!b24, ~39!

wherele andl are the screening lengths along the chain a
in the solvent, respectively.

The experimentally measurable structure factor can t
be evaluated:

Ŝ~k!'N„12~1/3!k2Rg
2~N!1O~k4!…,

Rg5~beffective/A6!N,

beffective5~18a!F S le

b D 4

2e21S l

bD 4Gb. ~40!

Note thatRg(N);N in this regime, as displayed in Fig. 6
Moreover, it turns out thatRg(N) is extremely sensitive to

FIG. 6. Schematic depiction of the linear behavior of the rad
of gyration for short chains. Note that the Kuhn length can
shorter than the segment length due to a fluctuation effect.
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the parameters in the potential. This is in contrast to
asymptotic regime encountered in the previous sect
where universal behavior was found. X-ray or neutron sc
tering experiments could be performed to test the predicti
presented in this section.

One could interpretbeffective in Eq. ~40! as an effective
correlation length and suggestbeffective→0 as a signal for
buckling, and hence for condensation. This interpretation
equivalent to the chemical potential considerations prese
earlier in the paper, and is similar to the approach of Gole
nian and Liverpool@21#.

VII. FINITE CONCENTRATION OF SEGMENTS

The discussion in the preceding two sections has b
primarily focused on behavior in the melt regime, when t
number concentration of segments is vanishingly small.
this case, fluctuations were accounted for, and the radiu
gyration for both long and short chains was computed. As
concentration of segments increases, the segments be
packed increasingly closer, thereby decreasing fluctuation
the system. Mean field approximations, obtained by extre
izing the energy functional can then be invoked to obt
insight into the physics.

In a previous paper@9#, which utilized an excluded vol-
ume interaction model, we showed how tubelike structu
can be obtained. If one restricts attention to obtaining
envelope of structures obtained in the various regimes de
eated in Sec. III, then a similar technique provides use
insight in the current approach as well. The basic idea,
signed to ease computation, is to replace the short-ran
potential by an effective delta-function pseudopotential. T
effective coupling constant which characterizes the pseu
potential can be positive or negative, depending on the va
of the chemical potentialm. As discussed earlier, the value o
the chemical potential is an average way of determin
whether the attractive part or the repulsive part dominates
behavior of the system.

The advantage of this method is that it yields the corr
average behavior of the system for a reasonably small ef
The disadvantage is that if one is interested in details of
structures which change on the spatial scale less than the
over which the interaction potential varies, then one m
resort to vastly more detailed calculations. The approxim
tion consists of the following replacement:

~1/2!aE E dnd3xdn8d3x8uc~xW ,n!u2V~xW2xW8!uc~xW8,n8!u2

→~1/2!aV̂~k50!E dnd3xE dn8uc~xW ,n!u2uc~xW ,n8!u2.

~41!

Extremization of the functional leads to

S ]

]n
2¹21aV̂~k50!uc~x,n8!u22m Dc~x,n!50. ~42!

s
e
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SHIRISH M. CHITANVIS PHYSICAL REVIEW E68, 061802 ~2003!
For cases when the segment labeln is not physically rel-
evant, this equation reduces to

„2¹26@ uc~x!u221#…c~x!50, ~43!

where the distances are scaled in units
(b/A6)„auÛMorse(k50)u…1/2, and the amplitudec has been
scaled byc0

21/3 so as to be dimensionless. The positive s
in the nonlinear partial differential equation holds whenm.0
in the melt phase, and the negative sign when in the c
densed state~m,0!.

Associatingm,0 with a condensed state implies the e
istence of coherent structures. The first structure we inve
gate is one in spherical geometry, with a larger amplitude
the center than towards the edges. The ordinary differen
equation that requires a solution is

2
1

r 2

]

]r S r 2
]c~r !

]r D2@ uc~r !u221#c~r !50. ~44!

It becomes convenient for numerical purposes to usy
51/r , so that Eq.~44! becomes

2y4C9~y!2„C~y!221…C~y!50. ~45!

For y→0, which is the same asr→`, the wave ampli-
tude is expected to decay, so that the nonlinear term v
ishes, and yieldsC(y)5ay exp(1/y). One can now integrate
numerically from some y5yminimum to y5ymaximum
[r minimum, adjustinga such that the slope of the amplitud
vanishes atymaximum. The result is shown in Fig. 7.

Another interesting structure that we have investigate
a toroidal structure. The interest in this structure arises fr
the fact that strands of DNA in an ionic solution conden
into such shapes under appropriate solvent conditi
@28,29#. One may construe the model above@Eq. ~43!# as an
effective model for DNA in solution. The coordinate surfac
in toroidal geometry are@30# ~i! planes through thez axis,
represented by an azimuthal angle,~ii ! spheres of varying
radii centered up and down thez axis, and finally,~iii ! tores,
or anchor rings around thez axis, labeled by the location o
their centers at a distancea, and cross-sectional and axi
radii a cschh anda cothh respectively, forh5const,h be-
ing the toroidal coordinate. Since we seek solutions w

FIG. 7. Displayed is the radial profile of a spherical coher
structure obtained form,0. The coordinates are dimensionless.
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toroidal symmetry, the only independent variable we need
consider ish, which leads to a nonlinear ordinary differenti
equation:

2 sinh~h/2!2
„tanh~h/2!c8~h!22 sinh~h/2!2c9~h!…

2a2
„c~h!221…c~h!50. ~46!

The radiusa of the torus is determined self-consistently
the value which yields a zero slope but nonzero amplitud
h→`. This is the center of thedoughnut. Again, since we are
looking for a doughnut shaped object, it follows that t
slope of the function should be zero at a value ofh at which
the cross-sectional radius of the tore isa cschh5a, i.e.,
whenh5arcsinh 1'0.8813. At this point thez axis is a tan-
gent to the tore at the origin, and physical consideration
plies a zero slope for continuity. The value of the wave a
plitude is taken to be zero ath5arcsinh 1, i.e., the origin. A
shooting method was employed wherea was varied itera-
tively until a solution with a zero slope ath→` was obtained
numerically. Operationally, the equation was integrated
some large value ofh. The result is displayed as contours
Fig. 8 in thex2z plane. In effect a doughnut shaped stru
ture is obtained, whose hole is partially filled. The energy
this structure is identical to that of the spherical blob d
played in Fig. 7.

These are two examples of coherent structures that
possible form,0. They are both equally energetically favo
able. As such, the approximations employed during th
calculations are applicable for large chain lengths, when
known experimentally that either spheroidal or toroidal co
figurations are equally likely to occur@28,29#. These ex-
amples do not constitute an exhaustive list.

Finally, we note from the previous figure, displayed
dimensionless variables, that the width of the toroidal co
figuration is O~1!, in the length scale used. Based on th
observation, one can calculate the thickness of the toroid
various parameters, and an example is given in Fig. 9.

t

FIG. 8. Displayed are the contours of a toroidal structure
m,0. Note that the doughnut has a profile which indicates a cha
ing density with distance from the center. Note that the width of
structure is approximately unity in dimensionless units.
2-10
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THEORY OF POLYELECTROLYTES IN SOLVENTS PHYSICAL REVIEW E68, 061802 ~2003!
periments of the sort performed by Golanet al. @28# and by
Butler et al. @5# should be able to provide experimental ve
fication of our predictions.

VIII. CONCLUSION

The theory described in this paper develops a functio
integral technique to treat realistic interactions between s
ments of a polymer in a realistic way, through the use o
finite-ranged repulsive-attractive interaction potential. E
amination of the chemical potential led to a classification
homopolymeric systems. It was pointed out that such a c
sification would be impossible with ana priori excluded
volume interaction model. Renormalization group techniq
were used to show that standard concepts in polymer phy
are recovered in the limit of low monomer number conce
tration, for asymptotically long chains, in the melt state. T
radius of gyration for extremely short chains is also cal
lated, and is linear in the chain length, reminiscent of a se
flexible chain. When the chemical potential is negative, c
densed structures are shown to exist, both in spherica
well as toroidal geometry. The predictions that follow fro
the theory presented in this paper, viz., the short chain ra
of gyration, the widths of the toroidal configurations as fun
tions of various experimentally accessible parameters co
be verified experimentally.
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APPENDIX

The renormalization group calculations presented in S
V focus purely on the interactions along a single strand.

FIG. 9. The width of the toroid is plotted in nanometers for tw
different cases, as the chain length is varied, for two differ
screening lengths in the solvent. The upper curve corresponds
screening length of 50b/A6. The lower curve corresponds to
screening length of 10b/A6.
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physically, one might suppose that for a collection of lo
chains, it is unimportant whether the interacting segme
belong to the same chain, or different chains. Arguments
now be presented which suggest that this is indeed the c
And the radius of gyration of a long chain, immersed in
collection of other chains is identical to the radius of gyr
tion of a single chain, whose monomers interact via a sh
ranged potential.

If there areNc chains in the system, then the polarizatio
bubble contribution discussed in Sec. V gets generalized s
ply by a straightforward factorNc :

P0~q,v!→2Nc

f ~v!

q3 ,

f ~v!52S v

A2p
D 2

@ ln~ uvu!23/21g#. ~A1!

The extra factor ofNc comes from the fact that the
screening can come from an intervening segment of any
Nc chains in the system.

The rest of the renormalization group arguments
through as before, with the result that at the fixed point,
renormalized interaction potential is given by

aV̂~q→0!→2
2p2q3

Ncv
2@ ln~ uvu!23/21g#

, ~A2!

where one notes the extra factor ofNc in the denominator.
Consequently, in the relevant long wave-length limit, t

energy functional forNc chains at the fixed point is given b

bFNc
* ;Nc

21(
i 51

Nc E dv

2pE d3k

~2p!3ĉi* ~k,v!

3S k3

v22p22D ĉi~k,v!, ~A3!

where the subscripti refers to thei th chain in the system
Note that the right-hand side of Eq.~A3! is simply the aver-
age of the energy functional overNc chains, as indicated by
the factor ofNc in the denominator. In this formal sense, th
result is identical to considering a single chain.

The arguments presented in Sec. V show that the radiu
gyration of a single chain, in the asymptotic limit, isRg

'(b/A6)N0.63. From Eq.~A3!, it follows that the radius of
gyration of a single chain immersed in a system ofNc21
chains is the same as this standard expression.

t
a
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