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Theory of polyelectrolytes in solvents
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Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian,
charged chain and derive an effective short-ranged potential between the charges on the chain. This potential
is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from
this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low
concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent character-
izing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value
obtained for second order phase transitions. For short chains, the radius of gyration varies lineaxlytiéth
chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain
lengthN indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when
the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical
potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal
condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the
parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable
to experimental verification.
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[. INTRODUCTION tical to the classical case. This is in distinction to the argu-
ments [10] given by Katchalsky[11] and Flory [12] for

A distinguishing feature of biopolymers is the presence ofpolyelectrolytes, where a long-range, unscreened Coulomb
charges along the chain and their subsequent interaction withteraction was employed and the effects of any solvent were
each other and ionic aqueous solvents. Yet another aspectignored.
the semirigidity of some biopolymers. In this sense, biopoly- This paper develops a model which begins with a
mers differentiate themselves from polymer melts, which arescreened Coulomb interaction between native electron
neutral, and most theoretical treatments involve the treatmermharges and adsorbed counter-ions along the segments of a
of flexible polymers. Furthermore, these theoretical treatGaussian chain. This screening length is independent of the
ments of melts almost exclusively use models of a selfsolvent properties. These charges also interact with the sur-
excluded volume nature. A general treatment of electrostaticounding ionic solvent, treated as a continuum. The theory in
interactions between charges on a polymer is crucial in ordethis paper continues the development of a functional integral
to extend the validity of theoretical models to biopolymers,techniqueg 9] which begins with the formulation of a system
polymers exhibiting counter-ion condensation in ionic sol-of many homopolymeric flexible chains, and whose seg-
vents, etc[1-4]. ments interact through a finite-range potential.

This paper lays a field-theoretic foundation for a theoret- The functional integral technique utilized in this paper is
ical treatment of charged polymers in ionic solutions. Tech-different from the coarse-graining method employed by Fre-
nically, the theory applies to flexible polyelectrolytes. How- dricksonet al.[13] Fredricksoret al. use the number density
ever, we have argue that by choosing the Kuhn length to bef the polymer segments as the order parameter. The advan-
the correlation length of a semirigid polymer, it should betage afforded by this technique is that the interaction term
possible to address the physics of semiflexible polymers. Thbecomes quadratic and hence trivial to calculate. However
intent is not only to understand the behavior of the radius othe entropy, or free-chain part of the energy functional be-
gyration with chain length, but also to gain a basic knowl-comes nonlinear, complex and hence presents a computa-
edge of condensation phenomena. Our calculations of thi#onal challenge. The order parameter introduced in our pa-
radius of gyration generalize standard treatments for melts. per is a probability amplitude whose absolute square
mean-field approach was employed to develop a phase digorresponds to the number density of segments. The free-
gram for condensation/noncondensation of charged polyehain portion of the energy functional is linear in this ap-
mers. In this endeavor, we found the recent experimentgbroach, while the interaction term remains understandably
paper by Butlert al. [5] very useful. nonlinear and difficult computationally. The positive

For the case of excluded volume interactions in poly-semidefinite form of our energy functional may also offer
mer melts, it was shown by de Genri€3$ and otherg7-9 some computational advantages. Our formalism can be
that in the limit of low number concentration of monomers, viewed as a generalization of the self-consistent field theory
the physics of polymers is analogous to the onset of a secongsed by Curro’s group6,14]. The model of interaction used
order phase transition. It will be shown that a similar situa-in this paper differs somewhat from that utilized by Curro
tion ensues when considering polyelectrolytes. The Floryet al. Our approach is most similar to that of Kleinert
exponent in this case, for long chains, is argued to be iden-15,16], but the scope of our study is broader.
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Functional integration is used to integrate over the fluc-
tuations in the ionic solvent, and derive an effective interac-
tion between the charges on the chain. This interaction is vHxn Y+ (x°,n%)
repulsive at short distances, and attractive for larger separa-
tions. The chemical potentigl corresponding to this inter-
action can be computed. The chemical potential changes = p-------mmmmmmmmmmmomeen
sign, depending on the parameter regime. Using the interpre-
tation of u as the energy required to add a segm@mbno-
mer to the system, one associajes 0 with meltlike behav-
ior, and <0 with a condensed state. Indeed it will be shown
that whenu<0, it is possible for a single strand of polyelec-
trolyte to condense into a toroidal shape. Spherical shapes FIG. 1. The Feynman diagram indicating schematically the bare
are also possible. vertex, which represents the interaction term in the energy func-

We discuss briefly in Sec. Il and the appendix the mannetional. It displays two segments interacting with each other at a
in which a collection of interacting strands, rather than adistance.
single strand, can be addressed within the formalism devel-
oped in this paper.

-12)a Vv
Y (x,n) y(x’,n’)

p(x,n"), (2)

b2
Onr — (€> V2

where D2y=Dy* Dy, B=1kgT, kg is Boltzmann’s con-
We reproduce here briefly for completeness the functionastant andT is the temperature. Thus we have another way of
integral formulation of a homopolymer chain. For the record,thinking about a system of flexible polymers, in terms of a
it must be stated that this formalism differs from the standargrobability amplitude/(X,n) and an energy functiongd 7
mapping of the self-avoiding walk of a single chain onto awhich is isomorphic to one that describes diffusion. Here
¢* field theory[6,7]. It can be generalized in a straightfor- (X,n) labels the locatiox in physical space, of theth seg-
ward way to deal with many chains. Technically speakingment of a chain. A similar approach has been advocated by
the model is restricted to flexible chains. However, if oneKleinert[15,16]. Following the convention in quantum field
treats the segment length as a Kuhn length, i.e., as an effetheory,|(X,n)|? is interpreted as the probability of finding a
tive distance which represents the correlation length of golymer segment at a given location in space.
semiflexible polymer, then one expects this model to repro- The main advantage of the functional path integral for-

BFo= f dn’d3xy* (X,n")

Il. THE BASIC FORMALISM

duce the overall features of a semirigid chain as well. malism is that one can model more easily interactions in
The probability distributiorGy(1,2;n) for a single Gauss- systems with large numbers of polymers by adding an inter-
ian chain may be represented k7] action term as shown below:

L For BF=BFo+ BAF,
3|R1—R2|2) BFo—BF=BFot+ B

,8A]-"=fd3xd3x’dndn’v(¢(>?,n),1//*(>Z,n’)), ®)

aﬁ(n')z)]

Ry o
~f¢ 'DR(n’)exp—
Ry an’

3 3/2

GO(l’Z;n):(erbzln|) S BT
3 n

(2_[32) fodn where V((X,n),* (X’,n")) represents the interaction be-

tween segments. Note that in general, on physical grounds,
2 ) -1 n#n’, as different configurations of the strand permit seg-
Inr 6 v 2,0, (D) ments from different parts of the chain to be in the proximity
of each other.

. . The form chosen fod in this paper is
where b is the Kuhn length of the polymer as discussed pap

above, and where,,=d/Jdn’. This expression is obtained by V(H(X,n), p* (X,n"))
considering only the entropy of a flexible chain.

Gy(1,2;n) can also be thought of as the Green’s function B 1 L 2 ., S N2
for the diffusion operator in three dimensions, as indicated ) [p(X,m)[* Up o (XR=X"D](X",n")[%.
by the last of Eq(1).

Alternatively, one knows from methods in functional in- (4)
tegration tha{18]

=(1,|

HereU, ,»(X—X") represents a repulsive-attractive short-
ranged interaction between monomers. The precise form of
2 -1 the potential useful for describing polyelectrolytes will be
dn—1—=1V? |2 0 . - . - .
n 6 ' discussed in detail the next section. Equafiénis displayed
pictorially in Fig. 1.
= = Upon extremizing the functioBF with respect ta/*, one
. 2 *
f Dgp* (Ry,n) h(Ry,00exp—[ BFo], obtains a nonlinear diffusion equation:

(1n|
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ap(x,n) (b2 0 N 3 . ) Rg(p) can also be defined in terms of the structure factor:
pramil vy Vag(X,n)+ | dn’ | d°|¢(X',n")]|
0 A
J[3[In(Se(k))[1" b
0 _ | =
X Up (=X d(R,0) =0, (5) RJN>—(““3E““ TV E
This equation is also analogous to the single-electron 1
Hartree—Fock equation in quantum mechanics, and applies to — = power of k=2. (12)
a single polymer strand. Vo
If a generalization to many strandseveral electron orbit- ) .
als in quantum mechanicss required, then the requisite  In the presence of interaction§o(k,w) gets renormal-
form would be ized in the usual way, and an associatiessedcorrelation
) N function G(k,N) and dressed structure facté(k) can be
Vi (X,n b S (N i :
I;n ) —(g)VZWi(f,nH > J’ dn’j P defined analogously
i=1Jo

Go(k,w)— (G H(k,w) =3 (k) 7L,
X|\I’j()_(),1n,)|2Un,n'(|)_()_)_()Il)q,i()zln):(l (6)

dw -
where the subscript on the amplitude indicates a chain label, G(k,N)= f > X —ioN)G(kw),
N, being the total number of chains in the system. The rest
of the paper will focus primarily on the physics of a single R N [N
chain. We shall return in the Appendix to a renormalization S(k)= N‘lg(O,N)‘lf f dmdng(k,|m—nl), (12
group calculation which refers to a system of multiple 0o
chains. . where a normalization factor has been included in the defi-
We shall now show how a connection can be made tQition of the structure factor
standard results in polymer theory. The correlation function The radius of gyratiorR (N) in the presence of interac-
Go(kp), p bel_ng the separation betyveen any two segmentg .\ .an e defined foIIov?/ing the ideas for the free chain in
on the Gaussian chain can be obtained by using the Fou”gérms of the dressed correlation function:
transform of the Gaussian distribution function discusse |

earljer in the section. This Fourier transform shall be denoted N a|In(G(k,N)G(ON) ~H|”
by Go(k,w): o(N)= oK Y
G S — 1
otk )= 7 bKy76’ —=power of k, (13)
o0 w ~ . . .
K, :j —exo —i Go(k,w). 7 where a normalizing factor has been inserted on the right
Go(k.P) —w 2T R=10p)Golk.w) ) hand side of Eq(13) for completeness. Equivalently,

A simple contour integration, performed by closing the a[3]In(5(k)S(0) )| 1”
contour in the complex» plane in the clockwise direction Ry(N)= Ik ,
leads to k=0

Go(k,p)=exp(—|p|(bk)*/6). 8

1 R
;=power of k inthe argument ofS(k,N).  (14)

The radius of gyrationg(p) can be defined as
Yet another method to calculate the radius of gyration will

d|In(Go(k,p))| " be presented in Sec. V.
O = ————— =
&m{ W FOW@ﬁ,
I1l. POLYELECTROLYTE IN A SOLVENT
i = power of k=2. (9) Let us suppose that the net charge density on any segment

120 along the chain is given by sum of negative and positive
, ) . charge densities on the chainpp(X,n)=p_(X,n)

. The expenmgntally qccesable structure factpr as§00|ateqip+(i'n)' with p_<0, p,>0. Then the total free energy
with the Gaussian chain dl segments can defined in the \yhich describes the interaction between these charges and
following fashion: the electrolytic solution is given by three terms, describing

the interaction of charges along the chain, the solvent, and

N [N
éo(k): Nflf f dmdngy(k,|m—n|) the interaction between the polymer and the solvent, respec-
0Jo tively:
~ _ 200/ N} 2 4
NN(l (1/3)k RQ(N) )+O(k ) (10) ,3}—0_’,8-7:: ,8[}—0""A}—polymer""Afsolvent‘"A}-polymer-solver}r
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B ! / va V
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-0.0002
_ 3 . .
BAT poymersatver _BJ d*xdnp (X, $(x), (15 FIG. 2. This is a plot of the effective potential derived in the

paper. Representative parameters were use80,\,=3.4 A, and
where¢(x) is the electrostatic potential of the ionic solvent, A=10 A.
ke=1/\, is the inverse screening length of the polymer,
=1/\ is the inverse screening length in the solvent, where B o R
is the dielectric constant of the solveré~80 for watey. /37:':< )J d®d®x’ dndn p(X,nV(|X=X'|) py(X",n").
The reason for assuming the screening lengths to be distinct (17)
for the chain {.) and the solventX) is that even in the
absence of an ion!c solvent, when _the adsorbed charg(_a IS One sees that the effective potentialexemplified in Fig.
nuII,. the conformations of the r_1egauv¢|y charged Gaussu_a@ is given as follows:
chain can screen the Coulomb interaction between the native
charges on the chain.

N

The charge distribution on the chain is given by V(|i_i,|):exp(— relX—X']) _exp— K|X=x']) _
. o [X—X']| e|Xx—x'
p-(X,;n)=q-()|¥(X,n]% g-(n)<0, (18
p(X,n)=q.(n)|¥(X,n)|% q.(n)>0. (16) Observe that integrating over the solvent degrees of free-

dom has led to an attractivanegative supplement to the
Here gq_(n) refers to the native negative charge on theoriginal short-ranged screened Coulomb interaction. The
backbone of the polymer, angl, (n) refers to the positive electrical polarization of the water, signified layserves to
counterions that may be adsorbed onto the chain. One cageaken this attractive part of the potential. Given that the
conclude from this that if the negative native charges areolvent we consider is water, which has a natural pH of 7,
singly charged, then the adsorbed counterions would have tene always has an associated nonzero screening length,
be multiply charged, as otherwise the net charge would bgiz., \.
zero, and we would be reduced to studying a neutral melt. It The various parameters used in model, gig(n), \, A¢
also allows for the possibility that the counterions are dockedre inter-related. This is because changing the ionic concen-
in a physically different location along the chain than thetration in the solvent affects not only, the solvent screen-
native charges, which would allow for local regions of attrac-ing length, but also the amount of adsorbed chaggén)
tion to be created. and hence the screening length along the chain as well.
Beyond these inferences, one notes that if the above fungsnd it may be prudent initially to appeal to experiment in
tion Eq.(15) were to be extremized with respect to the scalargrder to assess their magnitudes.
potential ¢, one obtains the standard Debye-Huckel equa- The physical notion behind the effective potential is
tion, valid in the limit of low ionic strengths. Thus our paper analogous to what happens in electron-phonon physics in
goes beyond the standard, mean-field Debye-Huckel modghetals, when the attraction between electrons and phonons
by considering fluctuations around that approximation in thgmotion of positive ionsleads to an effective attraction be-
full energy functional given by Eq(15). These fluctuations tween the electrons themselves. This effect can be depicted
will be shown shortly to lead to an attractive component Ofpictorially in Fig. 3.
the correlations between like charges along the chain. The approach taken in this paper, viz., integrating over the
Note that the electrostatic potential appears quadraticallgolvent degrees of freedom, is complementary to the ap-
in the functional. One can now integrate over solvent degreegroach of Manning[19], in which the focus rests on the
of freedom, in particular, accounting for deviations from theelectrostatic potential of the solvent. The polyelectrolyte,
Debye-Huckel mean-field limit to obtain an effective func- represented by an infinite line charge, was shown by Man-

tional: ning to polarize the surrounding ionic solvent. There exists a
thin annular cylinder around the rod which attracts counteri-

7= | D2uDé exd — dez ext — . ons, gllowmg for .condensathn under certain conditions.
J ¥D$ exil -~ B7] v exil~ B eteciid Manning'’s theory is a mean-field approach. The approach

developed in this paper is more general. The present theory
BFettective= BLFo+ F'1, accounts for fluctuations around the mean-field approxima-
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+Q ing that the system encourages the addition of monomers. It
is natural to identify this regime as that of condensation. Our
criterion is similar to that of Mannin@19], but it requires a
consideration of fluctuations around the Debye-Huckel ap-
proximation. In this sense our approach bears a greater re-
semblance to the analytic arguments in the paper of Jensen
et al.[20].

As discussed earlier in the paper, if we assume that the
native charge on the chain is negative, vig.,<0 and cor-
responds to the charge of a single electron, then clearly, we

o _ ) require g, the charge on the condensed counterion to be
FIG. 3 Aschem_atlc view of the correlation effect Whl(_:h leads t‘?multivalent, as otherwise the net charge is null, leading to a
e e o v s s oo eutal poymer, and a discusson of condensation bocomes
9 9 9Smoot. It is beyond the capability of the current theory to
address the difference in the condensation behavidifffr-

tion. It allows for a general description of the physics of . .
- : e enttypes of multivalent molecules carrying the same charge
polyelectrolytes, and is not restricted to a description of con:

. 5].

densation alone. | . . .
Furthemor, a suggested eater, f one takes the seqr %0 °0% COIbes, Butem ) 1] ow et v

ment lengthb to represent the correlation length of a semi-

o et of condensation, as signaled by the emergence of a peak
rigid polymer, we expect the model to reproduce the overal
. . L at a non-zero wave vector. Moreover, they show that there
phenomena associated with semirigid polyelectrolytes. . X : . .
also exists a maximum ion concentration above which con-

densation ceases. Equatid®) can be interpreted in light of
these experimental results. For low ion concentratians,
The effective potential derived in the previous section perthe adsorbed counterion charge is correspondingly small, and
mits an insight into the variety of behavior that polyelectro-the screening length along the chaipis very large. Since
lytes in solution can display. In order to do that, it is useful tothe dielectric constant of the aqueous solvent is high
add a constraint to the energy functional described in thé~80), the chemical potentiglk=27N{yCo(A2— € *\?)
previous section, vizF.¢; to conserve the number of mono- can be greater than zero, preventing condensation. As the ion
mers on the polymer: concentration increases, the screening lengths along the
chain and in the solvent decrease. When this change occurs
BFeti— BFett+ BAF,, in such a way that, shrinks faster tham\, such that\
> e\, then the chemical potentiad<0, leading to conden-
_ 3 S o2 sation. Indeed this criterion is similar to the one derived on
BAF,= _’uf dnj x| (xm% experimental grounds by Butlet al. For even higher ionic
concentrations), cannot shrink much below the monomer
n= 277N€bc0()\§— N2e™ Y, length, and it is possible for the chemical potential to become
positive once again. Condensation then ceases. It may prove
,=B(q:—|9-])?, (19  possible to adjust the parameters in this theory to reproduce
) ) ) . quantitatively the condensation data of Butitral. [5]. Our
where{ is the Bjerrum lengthc, is the number density of aim here is to display that the theory is simply capable of
monomersN is the chain length, and the chemical potential 3qdressing experiments. The cessation of condensation at
is obtained by minimizing the energy functional in E49)  relatively high ionic concentration appears to be a new ex-
in the limit that the wave amplitude is independent of perimental result, and it is important to point out that the
X, n. It has also been assumed for simplicity that there is aheory in this paper can address this issue.
uniform charge distribution along the chain. The theory presented in this paper is similar to that of
By convention, the chemical potential represents the Golestanian and Liverpodi21]. These authors use a phe-
energy required to add a segment to the system. Hence, up@@menological theory of semirigid chains decorated with
examining Eq(19), one sees three possible regimes. charges. The only interaction in their theory is that between
Melt. When, »>0, the polymer behaves as a melt, whenthese charges. The presence of a solvent is implicitly ac-
repulsion dominates, and it costs energy to add a segment i;owledged through an effective screening length. In our
the System. This occurs when the Screening Iength along th_ﬁeory, it would Correspond to neg|ecting the termlvem
chain\ > M \Je. This is similar to Manning'’s discussion of gnd Frolymer-solvent They show that fluctuations in the shape
polyelectrolytes. of a semirigid rod lead to a buckling instability. These au-
point. The monomers are perfectly miscible with eachthors too find cessation of condensation upon increasing the
other when the chemical potential=0. This occurs when salt concentration sufficiently, by considering the behavior of
Ne=\/\Je. the correlation length.
CondensationWhen the screening length along the chain  The current theory can accommodate the zipperlike motif
Ae<\/\/€, the chemical potential becomes negative, indicatinvoked by Kornyshev and Leikdi22]. Our approach can be

IV. REGIMES OF POLYELECTROLYTE BEHAVIOR
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B EV V. RENORMALIZATION GROUP CALCULATIONS

IN THE MELT REGIME
0.075

We shall now show that the polymer model considered in
0.05 this paper exhibits a fixed point of the renormalization group
transformation, reflecting the large fluctuations expected in
el the c,b>—0" (melt) regime. Since a renormalization group
/ , fixed point in the long wavelength limitfor long chain
-3 1 lengthg is always independent of the details of the interac-
tion, it is expected that our model of realistic interactions
should yield results identical to the excluded volume model
c{ usually considered in polymer theory. Nevertheless, it is use-
ful to derive this result explicitly so that it displays the va-
lidity of the field theoretic approach employed in this paper.
Further, we shall compute a reasonably accurate value for the
FIG. 4. A schematic of the double well potential given by the Flory exponent, obtained when the chain lengths very
energy densityBfer, in arbitrary units. Notice that the height of large. In what follows, we shall use a natural system of units,
the potential barrier decreases as the concentration of monomejis which the unit of length will be taken to uy\/é, where
decreases, allowing for more fluctuations between the minima.  p js the segment length. As discussed earlier in the papsr,
the monomer length for a flexible chaibncould be taken to
construed as providing an analytic background to the nube the correlation length for a semirigid chain.
merical simulations of Steveri&3] of bead and spring poly-  Finally, note that the model is analogous to the theory of
electrolytes in a solvent. dynamical seconq order phase transn@i’&], with the seg-
The onset of condensation in biopolymers, based on th8'ent labeln playing the role of time. The model has four
assumption of entirely rigid polyelectrolytes, has been ShOWI1]ndependent variables, viz., three spatial dimensions and an

by Kholodenko[24] to be analogous to the melting of vorti- additional label for the location of a segment along the chain.
CZS in Thouless’ two-dimensional model of a glass. In th Towards that end, let us consider the first order correction

. . "So the bare vertekthe basic interaction displayed in E®)].
future, one could attempt to investigate aspect further, usingt corresponds to the first order polarigat?lon diagq;am in

the current formallsm, WhICh. does not assume I’Igld. rods, 8hany-body physics. It represents the generalization of the
follows. Rather than integrating over the electrostatic poteng . réction” that occurs in an excluded volume interaction

tial of the solvent, one could attempt a functional integrationmode|[9]_

over the polymer degrees of freedom. In this case, extremiz- The result depicted in this figure can be encapsulated as

ing the new effective functional with respect to the electro-the renormalization of the coupling constaat (using a
static potential will lead to a generalization of the |ength scale ob/\/6):

Kholodenko model to nonrigid polyelectrolytes in solution.
co—0". In addition to the three regimes discussed above,
there is one more important regime within the melt phase
which merits attention, and permits a connection with the
scaling arguments first derived by de Genp@&s Consider
the energy densitf.; for a homogeneous: o(q,0)=— f

cl) <¢ )

a—ag(q,0)=a (1+ally(q,0)V(q)),

dSq/ dwré , é
2m?) 27 0o(q",)Go

x(g '—dl,0"~w), (21

Bferi=(L2NaV(k=0)(|¥|*—co[¥]?),  (20)

where the Fourier transforr®,(p,w) of the unperturbed

) _ propagatorGreen'’s function defined in Eq(1), is given by
wherea={€,,/b, where the dimensionless number concentra-

tion ¢, can be expressed in terms of the actual monomer

number concentratiof€, and the Kuhn lengthb as cq éo(p,w):ﬁ- (22)
=To(b//6)® Thus wherig,(b/\6)3< 1, one sees that the —lo+p

double-well structure displayed in the next figure is just be-

ginning to form. This is the traditional signal for a second- Now IIy(qg,w) represents screening of the interaction be-
order phase transitiofisee Fig. 4 Physically this occurs tween monomers due to intervening segments. Thus it is tac-
because the mean free path between collisions is very largdy assumed that we are in the long-wavelength regime, and
in the low number concentration limit, permitting large fluc- the chain length is large, as it is in this regime that one
tuations, the hall-mark of second order phase transitionsexpects screening effects to dominate. Screening is clearly
Note that the criterion above is consistent with the argumentanimportant for extremely short chains, as the probability of
given by Freed27], where it is shown that phase transition- finding intervening segments in this case is vanishingly
like behavior occurs in thb—0 limit. small.
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Upon performing the frequency integration in E81) by One must go to the long wavelength limit in order to
the method of residues, by closing the requisite contour innvoke the renormalization group. This renormalization
the lower half-plane: group applies to the infrared limigt—0), and must be dis-

tinguished from the preceding discussion regarding the be-
havior in theq— oo limit.
It is convenient to redefine a scaled coupling constant in

0,0~ o R e“ T
(23 the g—0 limit, with an associate@ function which yields
the renormalization group flow:

where Re implies the real part of the quantity on its right
hand side is to be considered. The polarizafiby{g, w) can

be recast as &R(q,w)=aR( f(w)\A/(3q=0))’
q
Ho(q, )=~ (2 q)f dAN" cos{wx)fdpp(exp( Zp)
=3 &R), 28
—exp(—2pg\)), (24) Alar)= (9InL (@r—ap) 28)

where{—0", and the factor of expf{p) has been inserted \whereq=L 1. In analogy with the theory of second order
into Eq. (24) to achieve convergence. We now invoke thephase transmons scale invariance of the coupling constant
integral representatlon of a gamma function, Viz.,must be invoked for a proper description of the physics. It
[rdxxPexp(-ax)=mta ®*D"((p+1)/m) to obtain follows from Eq.(28) that B(&g) has a nontrivial fixed point
closed form expressions for the integrals in E24). How- atag=a% , or atag=a}:

ever, this gives rise to divergent factors such’'és2). These

divergences can beuredvia different methods, such as Wil- -

son’s renormalization scheme. The renormalization scheme ar=1,

to handleultraviolet divergences utilized in this paper fol-

lows more closely the method of dimensional regularization " q®

[26] of 't Hooft and Veltman. This technique allows one to “R:m' (29

separate out the infinities, by settipg—p—e€, e—0", for
p+1/m equal to a negative integer, in the expression above
for the integral representation of the gamma function. Thls
allows us to express the polarization function as

It follows from Eq.(29) that in the long wavelength limit,

n thec,—0" regime, the interaction has the following uni-
versal form, independent of the particular interaction poten-

2—¢ tial we started off with

y(g,w)= (277)q5 24 (4W)2q3r(—2+e). (25)

A 720
Using the Macclaurin series fdt(—2+ ¢€), aV(q—0)— -~ W?[In(|o|)— 32+ 4]’ (30)

[(—2+e)~(1[e T+ 4(3)+O(e)], (26)

The same result could have been obtained in a more mun-
one can isolate the divergent portions of the polarizatiordane fashion by using the so-called random phase approxi-
function as being proportional © 2 ande*. These infini-  mation (RPA) in which one traditionally sums up bubble
ties can be canceled by the invocation of appropriate courdiagrams of all orders. Nonetheless, the renormalization
terterms inF, as is normally done in field theory. This allows group approach is essential in that it explicitly manifests the
us to retain only the finite portion of the polarization func- scale invariant properties of the system.

tion: Scaling arguments will be utilized to obtain a value of the
Flory exponent. These are provided in lieu of the conven-

To(q )= — f(_“’) tional reno_rmalization group argument based on scaling

' q® transformations. That treatment is based on the scaling prop-

erties of the simplegp* Ginzburg-Landau functional. In the
w \? present paper, we have a more realistic interaction potential
flw)=- N [In(jw) =32+ y], 27 viz., V to deal with. Consequently, the straightforward scal-
ing properties of the¢* excluded volume theory are no
where vy is Euler’s constant, numerically close to 0.5772. longer valid. A more complex set of scalings, involving the
A test of the renormalization scheme used to handle ultrascreening lengths are required to maintain the scale invari-
violet divergences here is to calculate an observable or ance of the current theory. But this implies a restriction on
known quantity such as the Flory exponent. This will bethe class of polyelectrolytic solutions that can be considered,
done shortly, after a thermodynamic fixed point has beeronforming to the scaling transformations. The alternate
identified. This fixed point is associated with the second or-derivation offered below suffices to yield the Flory exponent
der phase transition discussed in the previous. fairly accurately.

061802-7



SHIRISH M. CHITANVIS PHYSICAL REVIEW E68, 061802 (2003

Consider scaling behavior of the energy functional for a SN
Gaussian chain: = +

3 FIG. 5. A diagrammatic depiction of the approximation used in
BFo= f d_“’f d*k f//*(k w)(—iw+k2)fb(k ®) the calculation. The thick line indicates. The first term on the
) 2m) (2m)3 ' o right-hand side of the equation refers@g. The second term refers
(31 to theexchangdike diagram referred to in the text. The final term

o o ) ) is the second order correction.
The diffusionlike, self-similar form permits the functional

to be scale invariant under the following transformations: This value is quite different from the one derived by Flory
[12] and Katchalsky11] for the case of an unscreened Cou-
w—olN, lomb interaction, which yielded a linear dependence on the
chain length.
k—Kk/ §(N),

VI. RADIUS OF GYRATION FOR SHORT CHAINS

EN)=N™0, . .
For the case of short chains, when the coupling constant
z:/1—> 1}55/2(/\/) 32) a= \/5€b/b< 1, one can compute the lowest order Feynman
' diagram to estimate the self-energy, which renormalizes the

wherevy=1/2. The relation betweesiand \is identical to ~ Green’s functionGe(k,w). This estimate is correct when
the relation between the radius of gyratiBy andN. Hence <1 and when the chains length is relatively short. This is
we shall identify the length scal&(\) with the radius of ~because screening is expected on physical grounds to be un-
gyration. important for short chains. It turns out that there are two
Let us now consider the case when the interaction, Viz., terms ofO(«) in a perturbative expansion of the self-energy.
is turned on between the segments. The behavior of the edhe first one, the tadpole diagram can be renormalized away
ergy functional in the long wavelength limitj~0, o—0) N the usual fashion by the addition of a counterterm. The
is dominated by the behavior of the effective interaction af€maining term is reminiscent of the exchange diagram in
the fixed point of the renormalization group transformationsmany-electron physicéas shown in Fig. b

[see Eq(30)], Using the Feynman-Dyson technique, repetitions of this
diagram can be summed as a geometric series to infinite
do ¢ d3k K3 order. This exchange diagram contribution to the self-energy

~ — —A’c — ¢ i N

BF* J ZwJ (277)30 (k,w)( wa_2> t(k,w), can be expressed in closed form as follows:

(33 3

(zwq)ﬁo(k,w)f/(llz—ﬁl), 35

2exch(kaw): _af
where we have used‘~1+elnx, e<1 to convert a loga-
rithm to a power law.

This functional exhibits invariance under where it is tacitly assumed that we are in the low concentra-

tion limit. Since our focus is on estimating the radius of

0ol N gyration for relatively short chains, we need only to evaluate
’ the self-energy in the long-wavelength limit, vik-—0. To
Kkl E(N) facilitate this, the angular integrals in E(R5) can be done
' and the contributions t@(k?) of the integrand can be writ-
EN) =N, ten explicitly:
27 T
2 2
{b—u}gw(/\/), (34) fo dd)JO doV(Vk?+qg®—2kqcosb)

wherev=2/3—1/(37?)~0.63. 1 1 8mk?

This estimate of the radius of gyration holds for asymp- ~8m | ——— > 2 +( 3 )
totically large chain length&, when the concentration of 9"+ e €(q°+ &%)
monomer&,<(\/6/b)°. 3 3 4

If one accepts the value 0#~0.5889 as obtained within - 5 +q? 5
the framework of the Edwards’ model, then the result in this e(0?+ k%)% (g°+kp)? (0°+Kg)®
paper is accurate to about 92%. On the other hand, Kleinert
[15] has shown that when the asymptotic series inetfex- _ 4 l (36)
pansion is handled appropriately, the value of 0.5889 is re- e(g?+«?)8 '
placed by 3/5. Kleinert then uses field theoretic methods and
the replica trick to rederive a value 00.62. The value we The subsequerk integration can be performed with the
obtained,»~0.63 is fairly close to the universal value for aid of Mathematica. The results are long and cumbersome
v~0.634 accepted in phase transition theory. and not much is gained by stating the expressions explicitly,
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the parameters in the potential. This is in contrast to the
asymptotic regime encountered in the previous section,
where universal behavior was found. X-ray or neutron scat-
tering experiments could be performed to test the predictions
presented in this section.

One could interprebesecive IN EQ. (40) as an effective
correlation length and suggebtecive—0 as a signal for
buckling, and hence for condensation. This interpretation is
equivalent to the chemical potential considerations presented

Radius of gyration ~ N earlier in the paper, and is similar to the approach of Golesta-
nian and Liverpoo[21].

FIG. 6. Schematic depiction of the linear behavior of the radius VII. FINITE CONCENTRATION OF SEGMENTS
of gyration for short chains. Note that the Kuhn length can be . . . . .
shorter than the segment length due to a fluctuation effect. ‘The discussion in the preceding two sections has been
primarily focused on behavior in the melt regime, when the
other than to say that the integrals contain logarithmic term§umber concentration of segments is vanishingly small. In
of the form Inw. Formally, the next step is to evaluate the this case, fluctuations were accounted for, and the radius of

correlation function: gyration for both long and short chains was computed. As the
concentration of segments increases, the segments become
do exp(—iwN) packed increasingly closer, thereby decreasing fluctuations in
Gk,N)~ | =— — . (37)  the system. Mean field approximations, obtained by extrem-
2T —jw+k? =3 gye K, )

izing the energy functional can then be invoked to obtain
. . .insight into the physics.
This integral could be evaluated using the method of resi In a previous papefd], which utilized an excluded vol-

dues, by closing the contour in the lower half plane if the . ; ;
X . . ume interaction model, we showed how tubelike structures
root(s) of the denominator could be located. Since our inter-

est is in thek—0 limit. it is possible to estimate the root of can be obtained. If one restricts attention to obtaining an
; ' P i envelope of structures obtained in the various regimes delin-
the denominator perturbatively:

eated in Sec. lll, then a similar technique provides useful
Orgor= —ik2+iS ook, 0= —ik?)+O0(a?). (39 iqsight in the current approach as well. The basic idea, de-
signed to ease computation, is to replace the short-ranged
Before the residue can be calculated, the presence of tHeotential by an effective delta-function pseudopotential. The
logarithmic terms referred to above imply the existence of eeffective coupling constant which characterizes the pseudo-
branch cut in the complew plane from—c to 0 along the potential can be positive or negative, depending on the value
real axis. Hence the contour has to distorted slightly into the?f the chemical potentigk. As discussed earlier, the value of
lower half-plane along the negative real axis to avoid thisthe chemical potential is an average way of determining
branch cut, so that the only singularity enclosed by the conwhether the attractive part or the repulsive part dominates the
tour in the lower half-plane is at the root given by Eg§8).  behavior of the system.
It then follows, using Mathematica, that in the long wave- The advantage of this method is that it yields the correct

length limit: average behavior of the system for a reasonably small effort.
The disadvantage is that if one is interested in details of the
G(k,N)/G(k=0,N)~exp(—ikg(N)), structures which change on the spatial scale less than the one
over which the interaction potential varies, then one must
g(N)=a(Ai—e A\b 4, (399 resort to vastly more detailed calculations. The approxima-

_ . tion consists of the following replacement:
wherel and\ are the screening lengths along the chain and

in the solvent, respectively.

The experimentally measurable structure factor can the”(l/Z)af f dndPxdn’d3x’ | (%,n)|2V(X— %) | (X' ,n")|2
be evaluated:

S(k)~N(1— (1/39)k2R5(N) + O(k*)), —>(1/2)a\7(k=0)f dnd3xf dn’|(x,m)|3 p(X,n")|2
Rg: (Pefrective \/E)N, (41)
Ne|? A ot -
bef‘fective:(]-Ba)[(Fe) _et B) b. (40) Extremization of the functional leads to
Note thatR,(N)~N in this regime, as displayed in Fig. 6. i_ 20 U le— N2 _
Moreover, it turns out thaRy(N) is extremely sensitive to an Vi aV(k=0)[$0x,n")|*=p | (x,n)=0. (42)
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FIG. 7. Displayed is the radial profile of a spherical coherent
structure obtained fou<<0. The coordinates are dimensionless.

For cases when the segment lahe$ not physically rel- :
evant, this equation reduces to x

—y2+ x)2=1 X)=0, 43 FIG. 8. Displayed are the contours of a toroidal structure for
( [| i )| Dy(x) “3 n<0. Note that the doughnut has a profile which indicates a chang-
ing density with distance from the center. Note that the width of the

where the distances are scaled in units of - ) U ) )
structure is approximately unity in dimensionless units.

(b//6)(a|Uporse(k=0)])*2 and the amplitudes has been

scaled byc, *° so as to be dimensionless. The positive signtoroidal symmetry, the only independent variable we need to

in the nonlinear partial differential equation holds wher0  consider isy, which leads to a nonlinear ordinary differential
in the melt phase, and the negative sign when in the conequation:

densed statéu<O0).
Associatingu<0 with a condensed state implies the ex- 2 sinf( /2)2(tanf 7/2) ¢’ () — 2 sink(7/2)?¢" ( n))

istence of coherent structures. The first structure we investi- 2 2 B

gate is one in spherical geometry, with a larger amplitude at —a“ () = Dy(n)=0.

the center than towards the edges. The ordinary differential

equation that requires a solution is

(46)

The radiusa of the torus is determined self-consistently as
the value which yields a zero slope but nonzero amplitude at
n—oo. This is the center of thdoughnutAgain, since we are
)—[|¢//(r)|2—1]¢(r)zo. (44)  looking for a doughnut shaped object, it follows that the
slope of the function should be zero at a valueyait which
the cross-sectional radius of the toreasschn=a, i.e.,
It becomes convenient for numerical purposes to yise when s=arcsinh £0.8813. At this point the axis is a tan-

190 Z&zp(r)
T2 \U e

=1/r, so that Eq(44) becomes gent to the tore at the origin, and physical consideration im-
plies a zero slope for continuity. The value of the wave am-
—y*W(y) = (¥ (y)’~1)¥(y)=0. (45  plitude is taken to be zero af=arcsinh 1, i.e., the origin. A

shooting method was employed wheaewas varied itera-

For y—0, which is the same as—», the wave ampli- tively until a solution with a zero slope at—« was obtained
tude is expected to decay, so that the nonlinear term vamumerically. Operationally, the equation was integrated to
ishes, and yield¥ (y) =ay exp(1¥). One can now integrate some large value ofy. The result is displayed as contours in
numerically from some y=VYninimum 10 Y=VYmaxmum Fig. 8 in thex—z plane. In effect a doughnut shaped struc-
=rminmum adjustinga such that the slope of the amplitude ture is obtained, whose hole is partially filled. The energy of
vanishes aynaimum The result is shown in Fig. 7. this structure is identical to that of the spherical blob dis-

Another interesting structure that we have investigated igplayed in Fig. 7.
a toroidal structure. The interest in this structure arises from These are two examples of coherent structures that are
the fact that strands of DNA in an ionic solution condensepossible foru<0. They are both equally energetically favor-
into such shapes under appropriate solvent conditionable. As such, the approximations employed during these
[28,29. One may construe the model abd¥s. (43)] as an  calculations are applicable for large chain lengths, when it is
effective model for DNA in solution. The coordinate surfacesknown experimentally that either spheroidal or toroidal con-
in toroidal geometry ar¢30] (i) planes through the axis, figurations are equally likely to occu28,29. These ex-
represented by an azimuthal ang(@) spheres of varying amples do not constitute an exhaustive list.
radii centered up and down tlzeaxis, and finally(iii ) tores Finally, we note from the previous figure, displayed in
or anchor rings around theaxis, labeled by the location of dimensionless variables, that the width of the toroidal con-
their centers at a distan@ and cross-sectional and axial figuration is O(1), in the length scale used. Based on this
radii a cschy anda coth respectively, forp=const,n be-  observation, one can calculate the thickness of the toroid for
ing the toroidal coordinate. Since we seek solutions withvarious parameters, and an example is given in Fig. 9. Ex-
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T=300 K, co=0.3 physically, one might suppose that for a collection of long
chains, it is unimportant whether the interacting segments
40 » belong to the same chain, or different chains. Arguments will
A= 50 b/6 now be presented which suggest that this is indeed the case.
€ 30 And the radius of gyration of a long chain, immersed in a
i collection of other chains is identical to the radius of gyra-
2 9 tion of a single chain, whose monomers interact via a short-
= ranged potential.
10 » If there areN chains in the system, then the polarization
A= 10b/6 o : ; : :
bubble contribution discussed in Sec. V gets generalized sim-
ply by a straightforward factoN, :
200 400 600 800 1000
Chain Length (x 1000 segments)
f(w)
FIG. 9. The width of the toroid is plotted in nanometers for two o(q,w)— — Nc?,
different cases, as the chain length is varied, for two different
screening lengths in the solvent. The upper curve corresponds to a
screening length of 80./6. The lower curve corresponds to a ’
i w
screening length of 19/6. f(w)=—<\/_7) (o)) — 312+ 7], (A1)
a

periments of the sort performed by Golahal.[28] and by
Butler et al. [5] should be able to provide experimental veri-

fication of our predictions. The extra factor ofN, comes from the fact that the

screening can come from an intervening segment of any of
Viil. CONCLUSION N, chains in the system.

The theory described in this paper develops a functional Th€ rest of the renormalization group arguments go
integral technique to treat realistic interactions between sedghrough as before, with the result that at the fixed point, the
ments of a polymer in a realistic way, through the use of de€normalized interaction potential is given by
finite-ranged repulsive-attractive interaction potential. Ex-
amination of the chemical potential led to a classification of
homopolymeric systems. It was pointed out that such a clas- .
sification would be impossible with aa priori excluded aV(q—0)——
volume interaction model. Renormalization group techniques
were used to show that standard concepts in polymer physics
are recovered in the limit of low monomer number concen- ) )
tration, for asymptotically long chains, in the melt state. The'Where one notes the extra factorMf in the denominator.
radius of gyration for extremely short chains is also calcu- Consequently, in the relevant long wave-length limit, the
lated, and is linear in the chain length, reminiscent of a semi€nergy functional foN chains at the fixed point is given by
flexible chain. When the chemical potential is negative, con-
densed structures are shown to exist, both in spherical as

2772q3
New?[In(|o|)—3/2+y]’

(A2)

well as toroidal geometry. The predictions that follow from . Yo rde [ d3 -

the theory presented in this paper, viz., the short chain radius ﬁfﬁc” N ;1 EJ Wci (k)

of gyration, the widths of the toroidal configurations as func-

tions of various experimentally accessible parameters could K3

be verified experimentally. x( 2_W2> Ci(k,w), (A3)
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The arguments presented in Sec. V show that the radius of
gyration of a single chain, in the asymptotic limit, &
~(b/\J6)N%83 From Eq.(A3), it follows that the radius of

The renormalization group calculations presented in Seqyration of a single chain immersed in a systemNaf-1
V focus purely on the interactions along a single strand. Buthains is the same as this standard expression.
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